skip to main content


Search for: All records

Creators/Authors contains: "Barnard, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The ocean is a vast three-dimensional space that is poorly explored and understood, and harbors unobserved life and processes that are vital to ecosystem function. To fully interrogate the space, novel algorithms and robotic platforms are required to scale up observations. Locating animals of interest and extended visual observations in the water column are particularly challenging objectives. Towards that end, we present a novel Machine Learning-integrated Tracking (or ML-Tracking) algorithm for underwater vehicle control that builds on the class of algorithms known as tracking-by-detection. By coupling a multi-object detector (trained on in situ underwater image data), a 3D stereo tracker, and a supervisor module to oversee the mission, we show how ML-Tracking can create robust tracks needed for long duration observations, as well as enable fully automated acquisition of objects for targeted sampling. Using a remotely operated vehicle as a proxy for an autonomous underwater vehicle, we demonstrate continuous input from the ML-Tracking algorithm to the vehicle controller during a record, 5+ hr continuous observation of a midwater gelatinous animal known as a siphonophore. These efforts clearly demonstrate the potential that tracking-by-detection algorithms can have on exploration in unexplored environments and discovery of undiscovered life in our ocean. 
    more » « less
  2. In this paper, we focus on the problem of learning a Bayesian network over distributed data stored in a commodity cluster. Specifically, we address the challenge of computing the scoring function over distributed data in a scalable manner, which is a fundamental task during learning. We propose a novel approach designed to achieve: (a) scalable score computation using the principle of gossiping; (b) lower resource consumption via a probabilistic approach for maintaining scores using the properties of a Markov chain; and (c) effective distribution of tasks during score computation (on large datasets) by synergistically combining well-known hashing techniques. Through theoretical analysis, we show that our approach is superior to a MapReduce-style computation in terms of communication and width. Further, it is superior to the batchstyle processing of MapReduce for recomputing scores when new data are available. 
    more » « less